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AEMC of the ESPP project is the source of environmental data and samples that determine the
stressors that will be studied, provides the environments for growing the organisms to be
tested, simulates stressed environments, and verifies the conceptual models to determine how
these stress regulatory pathways control the biogeochemistry of contaminated sites
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We are using organisms having fully sequenced genomes (Desulfovibrio vulgaris,
Geobacter sulfurreducens PCA, Geobacter metallireducens GS-15 and
Methanococcus maripaludis) to construct different tri-cultures and develop tools to
monitor community composition. G. sulfurreducens and G. metallireducens consume
acetate and use alternative electron acceptors, including nitrate, fumarate and iron.

 

DM – D. vulagaris and M. maripaludis coculture;
TGS - D. vulagaris, G. sulfurreducens PCA and M. maripaludis
triculture;
TGM - D. vulagaris , G. metallireducens GS-15 and M. maripaludis
triculture;
 f - presence of fumarate

 
Methanogenic tri culture of D. vulgaris, M. maripaludis and  G.
sulfurreducens reduces fumarate, produces methane and evolves hydrogen.
DM – D. vulagaris and M. maripaludis coculture;
TGS - D. vulagaris, G. sulfurreducens PCA and M. maripaludis triculture;
GS - G. metallireducens GS-15monoculture;
 f - presence of fumarate
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Figure 1: Growth of DvH and DP4 exposed to 50 µM CrO4
=.  Two

different inoculums were tested, values shown (0.10, 0.20) represent
calculated initial OD600.

 
Figures 1a-b  RT-PCR amplification (DNA template concentrations   a: 
0.076 ng; b: 47.6 ng, respectively; amplicon size: 155 bp) 
 
Table 1 Threshold cycle data for three parallel amplifications 

DNA [ng] Ct values for 1 Ct values for 2 Ct values for 3 
    

0.076 21.63 21.99 21.6 
0.381 19.39 19.45 19.62 
1.904 17.24 17.39 17.69 
9.52 15.51 15.65 14.6 
47.6 13.91 13.62 13.79 

 

 
Figures 2a-b  Melt curves (DNA template concentrations a: 0.08 ng; b: 
47.6 ng, respectively; amplicon size: 155 bp; melt temperature: 86.5°C) 

Real time PCR provides a highly reproducible and
relatively inexpensive way of high-throughput analysis
of culture purity in a continuously running bioreactor. A
combination of universal and DvH-specific primers
targeted less than 200-bp fragments of the highly
conserved 16S rRNA-gene, respectively. Using SYBR®

GreenER™ (Invitrogen) for amplicon detection,
genomic DNA was amplified in a wide dynamic range
with excellent reproducibility (Figures 1a-b). Template
concentration, as expected, only influenced threshold
cycle (Ct) but not the melt temperature (Table 1). The
latter is only influenced by the length and sequence of
the amplicon (Figures 2a-b).

These results show the profile of osmotic stress comparing DvH
WT with 4 mutants of DvH.  Here, WT is more sensitive than the
mutant strains to increasing concentrations of sodium acetate,
KCl, NaCl and NaNO2.

Phenotype Microarray:phenotypic response to mutations
WT DvH PM09: Osmotic stress

  

  

JW9007

JW9013

JW9009

JW9011

Data processing interface:
http://vimss.lbl.gov/~jsjacobsen/GTL/VIMSS/HazenLab/OmnilogPM/home.html

The minimal inhibitory concentration (MIC) was
determined in part by the organism’s ability to
biotically reduce Fe(III) to  Fe(II) with the
amendments of five different NaCl concentrations.

The minimal inhibitory concentration (MIC)
of NaCl was determined through the
combination of Acridine Orange Direct cell
Counts (AODCs) (dashed lines) and the
organism’s capacity for biotic Fe(III)
reduction (solid lines).
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Phylogenetic relationship of cloned

SSU rRNA genes classified in the -

Proteobacteria from bio-stimulated

wells at S-3 waste ponds compared

with reference sequences (in bold)

from GENBANK (accession numbers

in parenthesis).   The numbers on the

trees refer to bootstrap values on 500

replicates. Methanosarcina mazei

(EF452664) was used as the

outgroup.
  5.3 Mb sequenced genome

  73.5% G+C content

  4386 ORFs (4336 protein coding)

 1 SSU rRNA gene

  29.5% Unknown Function

  27.8% CHP 1.7% HP

The fraction of the genes annotated
for Signal Transduction Pathways is
greater than the fraction observed for
95% of completed genomes.

Anaeromyxobacter sp. Fw109
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Normalized log expression ratios comparing single stranded (top) and double stranded

amplifications (bottom) to unamplified enriched cDNAs from log phase DvH cells.  Many

fewer transcripts are detected, with higher variablity using the single stranded approach

•Using single stranded or double stranded templates phi29 can
efficiently amplify cDNAs in the 200 to 1KB range over 10000 fold
in 4 hr reactions
• Double stranded amplifications tend to result in more uniform
and unbiased amplifications than single stranded when compared
to unamplified controls via microarray hybridizations.
•Solexa sequencing comparisons with the developed methods are
currently ongoing
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